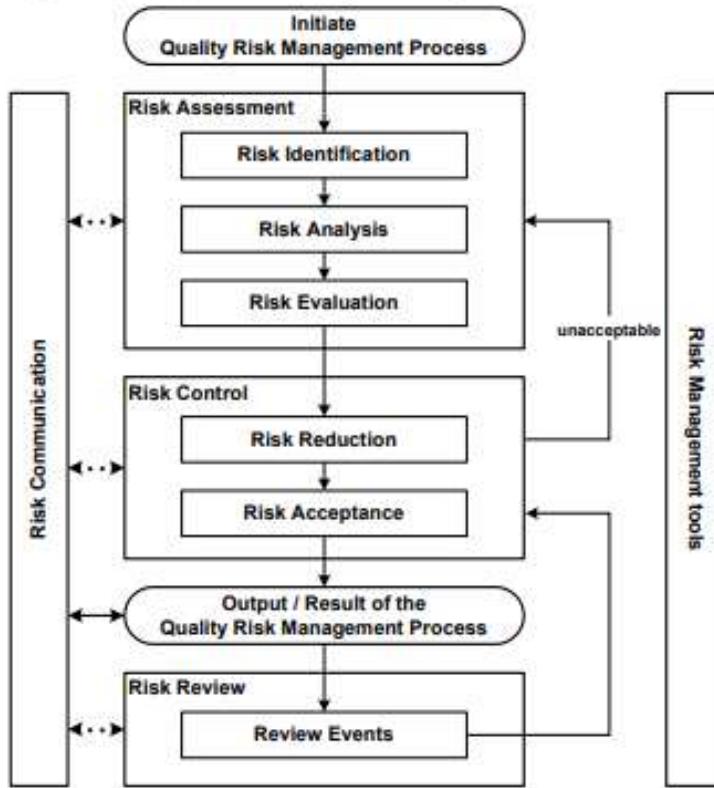


جمهوری اسلامی ایران
وزارت بهداشت، درمان و آموزش پزشکی

رَأْسَ الْرَّحْمَنِ
بِرْ


Quality Risk Management (QRM) in the Pharmaceutical Industry

- Based on ICH Q9 AND PIC/S Guidelines

جمهوری اسلامی ایران
وزارت بهداشت، درمان و آموزش پزشکی

سازمان غذادارو
IFDA

Overview

- **Objective:** Understand principles, implementation, and tools of QRM
- **Agenda:**
 1. Definitions and Importance of QRM
 2. Key Guidelines (PIC/S and ICH Q9)
 3. Tools and Techniques
 4. Implementation Steps
 5. Case Study and Practical Application
 6. Challenges and Best Practices

What is QRM?

- A systematic process to assess, control, monitor, and review risks
- Risk = Probability x Impact
- Core Principles:
 - Decisions based on scientific data and risk levels

Why is QRM Important?

- Ensures Patient Safety: Reduces quality-related risks
- Regulatory Compliance: Integral to GMP
- Operational Efficiency: Focus on high-risk areas
- Supports Decision-Making: Data-driven decisions

PIC/S and QRM

- PIC/S ensures international harmonization of GMP standards
- Role of QRM:
 - Enhances GMP compliance
 - Promotes flexibility in audits based on risk
 - Emphasizes a science-based approach.
- Alignment with ICH Q9: Uses the same framework

QRM Tools and Techniques

- Recommended by PIC/S:
 - **FMEA** (Failure Mode and Effects Analysis)
 - **FTA** (Fault Tree Analysis)
 - **HACCP** (Hazard Analysis and Critical Control Points)
 - **Ishikawa Diagrams** (Fishbone Analysis)
- Purpose: Identify, prioritize, and control risks effectively

QRM Implementation Steps (Part 1)

1. Planning and Organizing:

- Define scope, objectives, and team roles
- Train staff on QRM principles and tools

2. Risk Identification:

- Gather data and identify potential risks
- Example: Microbial contamination during production

3. Risk Analysis:

- Evaluate severity, probability, and detectability
- Use RPN (Risk Priority Number): **RPN = S × P × D**

فرمول توزیع دوجمله‌ای (The Binomial Distribution Formula)

$$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n-k}$$

Where:

- $P(X = k)$: Probability of exactly k successes.
- $\binom{n}{k}$: The number of combinations of n trials taken k at a time.
- p : Probability of success in a single trial.
- $1 - p$: Probability of failure in a single trial.
- n : Total number of trials.
- k : Number of successful trials.

۱) برآورد مستقیم از داده‌های تکرارپذیر (x رخداد در n بار تلاش)

- برآورد نقطه‌ای:
$$\hat{p} = \frac{x}{n}$$

احتمال حداقل یک رخداد در n تلاش با احتمال تک‌تلاش p :

$${}^n(p-1) - 1 = (1 \leq) P$$

قاعده ۳ (برای $x=0$ با اطمینان ۹۵٪):

اگر در n مشاهده هیچ رخدادی ندیدید، کران بالای تقریبی احتمال وقوع:

$$\frac{3}{n} \gtrsim 95\%p$$

فاصله اطمینان ۹۵٪ (ویلسون) برای p :

$$\frac{1.96 = z}{\sqrt{\frac{2z}{4n} + \frac{(p-1)p}{n}z}} \pm \frac{\frac{2z}{2n} + \hat{p}}{\frac{2z}{n} + 1} = \text{WilsonCI}$$

($\ddot{\Psi}$)

جمهوری اسلامی ایران
وزارت بهداشت، درمان و آموزش پزشکی

2) رویدادهای نادر / نرخ محور (فرایند پواسون-نمایی)

وقتی نرخ رخداد در واحد زمان/ فرصت را می‌دانید:

- اگر نرخ ثابت λ در بازه t باشد (پواسون):

$$\frac{\lambda t - e^{\lambda t}}{k!} = P_{\text{رخداد}}(k)$$

احتمال حداقل یک رخداد: $P_{\text{رخداد}}(1 \leq t) = 1 - e^{-\lambda t}$

احتمال صفر رخداد: $P_{\text{رخداد}}(0) = e^{-\lambda t}$

- از $MTBF$ به احتمال: (برای خرابی‌های نمایی)

$$\lambda t - e^{-\lambda t} = 1 \leq P_{\text{رخداد}}(t) = \frac{1}{MTBF}$$

- تبديل «نرخ به ازای هر N واحد» به λ :

$$\lambda = \frac{a}{N}$$

($\ddot{\Phi}$)

جمهوری اسلامی ایران
وزارت بهداشت، درمان و آموزش پزشکی

(3) تبدیل های پرکاربرد در کیفیت

• احتمال عدم انطباق از توزیع نرمال (برای مشخصه های بیوسته):

$$\text{اگر } X \sim \mathcal{N}(\mu, \sigma)$$

$$\begin{aligned} \left(\frac{USL - \mu}{\sigma} \right) \Phi - 1 &= (USL < P(X \\ \left(\frac{LSL - \mu}{\sigma} \right) \Phi &= (LSL > P(X) \end{aligned}$$

و $P(X < USL) + P(X > LSL) = P(X \text{ خارج از حدود})$

• احتمال تک فرست: DPMO

$$\frac{DPMO}{10^6} = p$$

احتمال حداقل یک عدم انطباق در N فرصت: $N(p - 1) - 1$

4) تجمعی/گسترش به چند بار استفاده

- n بار استفاده/تماس مستقل با احتمال تک بار p :
$${}^n(p-1) - 1 = (n-1)P$$
$${}^{np}e - 1 \approx$$
 (برای p کوچک:)

5) نکات برآورد آماری (وقتی داده کم است)

- تخمین بیزی برای نسبت وقوع با بیشین بنا $\text{Beta}(a, b)$:
$$\cdot \frac{x+a}{n+a+b} \text{ بین} (x-n, b+\text{Beta}(a, b)) \text{ و میانگین بین}$$
$$(0.5 = b = a)$$
 (گزینه محافظه کارانه رایج: بیشین جفریز $a = b = 0.5$)

جمهوری اسلامی ایران
وزارت بهداشت، درمان و آموزش پزشکی

نگاشت

6) نگاشت به «امتیاز وقوع» در FMEA (نمونه سیاست داخلی)

نگاشت‌ها استاندارد واحد جهانی ندارند و باید داخلی‌سازی شوند؛ مثال:

امتیاز 0	احتمال سالانه وقوع برای یک آیتم	توصیف نمونه
1	> 1 در میلیون	بسیار نادر
3	≈ 1 در صد هزار	بسیار کم
5	≈ 1 در ده هزار	کم
7	≈ 1 در هزار	متوسط رو به زیاد
9	≈ 1 در صد	زیاد
10	≤ 1 در ده	بسیار زیاد

سپس با $P \leq 1$ در افق $t = e^{-\lambda t}$ و داده واقعی، 0 را کالیبره کنید.

مقیاس پیشنهادی امتیاز وقوع (O)

امتیاز را بر اساس «احتمال حداقل بک رخداد» در افق/تعداد فرصت تعریف شده تعیین کنید:

- $50\% \leq P : O=10$ •
- $50\% > P \geq 20\% : O=9$ •
- $20\% > P \geq 10\% : O=8$ •
- $10\% > P \geq 5\% : O=7$ •
- $5\% > P \geq 1\% : O=6$ •
- $1\% > P \geq 0.5\% : O=5$ •
- $0.5\% > P \geq 0.1\% : O=4$ •
- $0.1\% > P \geq 0.01\% : O=3$ •
- $0.01\% > P \geq 0.001\% : O=2$ •
- $0.001\% > P : O=1$ •

نکته: «P» باید برای همان افق/تعداد استفاده‌ای محاسبه شود که در FMEA معیار شده‌اید (مثلاً در هر ۱۰ راه‌اندازی، در هر ۰۰ بج، یا در یک سال عملیات).

7) مثال‌های سریع

مثال ۱ (بواسون): نرخ آلودگی فیلتر $\lambda = 0.02$ در هر بج است. در ۵۰ بج: $0.632 \approx e^{-50 \times 0.02} = e^{-1} = e^{-\lambda t} = (1 \leq)P$ (حدود ۶۳٪).

مثال ۲ (تکرار مستقل): احتمال خرابی یک واحد در هر راه‌اندازی $p = 0.005$ است. در ۱۰ راه‌اندازی: $0.049 \approx 0.951 - 1 \approx 10(0.995 - 1) \approx 10(0.005 - 1) = (1 \leq)P$ (نزدیک ۴.۹٪).

QRM Implementation Steps (Part 2)

4. Risk Evaluation:

- Compare RPN to thresholds
- Determine actions for unacceptable risks

5. Risk Control:

- Design and implement mitigation strategies
- Example: Install HEPA filters to reduce contamination risks

6. Risk Review:

- Monitor effectiveness of controls
- Update risk assessments for process or regulation changes

Application Areas of QRM

1. Production:

- Control cross-contamination risks
- Ensure batch uniformity

2. Process Validation:

- Verify reproducibility of critical processes

3. Change Control:

- Assess risks from supplier or equipment changes

4. Storage and Distribution:

- Mitigate risks in transportation and storage

Case Study: Material Potency Issue

- **Scenario:** A supplement product contained less active ingredient than labeled
- **Identified Risks:**
 1. Poor supplier quality control
 2. Inaccurate weighing during mixing
 3. Inadequate process monitoring
- **Actions:**
 - Enhanced supplier audits
 - Installed automated weighing systems
 - Increased IPC sampling frequency

Challenges in Implementing QRM

- Complexity of tools (e.g., FMEA can be resource-intensive)
- Resistance to change in organizations
- Documentation burden for compliance
- Need for extensive staff training

Summary

- QRM ensures product quality and patient safety
- Core steps: Plan, identify, analyze, evaluate, control, and review risks
- Practical Impact: Enhances compliance and operational efficiency
- Final Thought: Effective QRM is essential for pharmaceutical excellence

Relevant PIC/S Regulations and Standards

1. Annex 20:

- o This section of the PIC/S Guide is directly dedicated to **Quality Risk Management (QRM)**.
- o It was developed based on **ICH Q9**.

2. Annex 1:

- o Relates to the **manufacture of sterile products**, with a focus on **risk control in cleanroom environments**.

3. Part II of the PIC/S Guide to GMP:

- o Relates to **Active Pharmaceutical Ingredients (APIs)** and **risks associated with their manufacture**.

از توجه شما سپاسگزاریم

Thank you for your attention